Recondicionamento ao Esforço na Lesão Medular

Sofia Bento, Maria da Paz Carvalho, Filipa Faria

Resumo


A lesão medular) condiciona sequelas funcionais, psicológicas e socioeconómicas importantes. As doenças vasculares, incluindo a doença cardiovascular, são a principal causa de morte na lesão medular crónica, sendo a doença cardiovascular a principal causa de morte nos indivíduos com idade superior a 60 anos ou com uma duração de lesão superior a 30 anos; estes doentes apresentam uma esperança média de vida próxima da população em geral, mas com morbilidade e mortalidade por doença cardiovascular superior, por fatores de risco associados ao descondicionamento físico e envelhecimento precoce, salientando-se: inatividade física, maior prevalência de fatores de risco cardiovasculares (dislipidémia, sobrecarga ponderal, aumento da resistência à insulina/diabetes mellitus) e alterações neurohumorais sistémicas e locais.

Neste trabalho, são abordadas as consequências cardiovasculares e metabólicas da lesão medular, as vantagens do exercício e de um programa de recondicionamento ao esforço.

Os programas de exercício podem reverter algumas características que ocorrem após lesão medular e que reduzem o risco cardiovascular, bem como contribuir para promover a saúde, independência e qualidade de vida a longo-prazo.


Palavras-chave


Doenças Cardiovasculares; Lesão Medular; Terapia por Exercício

Texto Completo:

PDF

Referências


DeVivo MJ, Stover SL. Long-term survival and causes of death. In: Stover SL, DeLisa JA, Whiteneck GG, editors. Spinal Cord Injury: Clinical Outcomes from the Model Systems. Aspen: Gaithersburg;1995. p. 289 – 316.

Van den Berg ME, Castellote JM, de Pedro-Cuesta J, Mahillo-Fernandez I. Survival after spinal cord injury: a systematic review. J Neurotrauma. 2010; 27:1517-28.

Grange CC, Bougenot MP, Groslambert A, Tordi N, Rouillon JD. Perceived exertion and rehabilitation with wheelchair ergometer: comparison between patients with spinal cord injury and healthy subjects. Spinal Cord. 2002; 40: 513-8.

Noreau L, Shepard RJ, Simard C, Paré G, Pomerleau P. Relationship of impairment and functional ability to habitual activity and fitness following spinal cord injury. Int J Rehabil Res. 1993; 16: 265-75.

Jacobs PL, Neash MS. Exercise recommendations for individuals with spinal cord injury. Sports Med. 2004; 34:727-51.

Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007; 86: 142-52.

Groah SL, Weitzenkamp D, Sett P, Soni B, Savic G. The relationship between neurological level of injury and symptomatic cardiovascular disease risk in the aging spinal injured. Spinal Cord. 2001; 39: 310-7.

Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care. 2004; 7: 635–9.

Bauman WA, Spungen AM. Metabolic changes in persons with spinal cord injury. Phys Med Rehabil Clin N Am. 2000; 11: 109–40.

Weaver FM, Collins EG, Kurichi J, Miskevics S, Smith B, Rajan S, et al. Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil. 2007; 86:22-9.

Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil. 2003; 84:1068–71

Flank P, Wahman K, Levi R, Fahlström M. Prevalence of risk factors for cardiovascular disease stratified by body mass index categories in patients with wheelchair-dependent paraplegia after spinal cord injury. J Rehabil Med. 2012; 44: 440–3.

Laughton GE, Buchholz AC, Martin Ginis KA, Goy RE; SHAPE SCI Research Group. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord. 2009; 47:757-62.

Inskip J, Ramsey JB, Yung A, Kozlowski, Yung A, Kozlowski P, et al. Cardiometabolic risk factors in experimental spinal cord Injury. J Neurotrauma. 2010; 27: 275-85.

Manns PJ, McCubbin JA, Williams DP. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil. 2005; 86:1176–81.

Lee MY, Myers J, Hayes A, Madan S, Froelicher VF, Perkash I, et al. C-reactive protein, metabolic syndrome, and insulin resistance in individuals with spinal cord injury. J Spinal Cord Med. 2005; 28:20–5.

Rajan S, McNeely MJ, Hammond M, Goldstein B, Weaver F. Association between obesity and diabetes mellitus in veterans with spinal cord injuries and disorders. Am J Phys Med Rehabil. 2010;89:353-61.

Wang TD, Wang YH, Huang TS, Su TC, Pan SL, et al. Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formos Med Assoc. 2007; 106: 919-28.

Huang CC, Liu CW, Weng MC, Chen TW, Huang MH. Association of C-reactive protein and insulin resistance in patients with chronic spinal cord injury. J Rehabil Med. 2008; 40: 819-22.

Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, et al. High-sensitivity c-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol.2013; 62: 397-408.

La Favor JD, Hollis BC, Mokshagundam SL, Olive JL. Serum hsCRP and visfatin are elevated and correlate to carotid arterial stiffness in spinal cord-injured subjects. Spinal Cord. 2011;49:961-6.

Krassioukov A, Warburton D, Teasell R, Janice J, The SCIRE Research Team. A systematic review of the management of autonomic dysreflexia following spinal cord injury. Arch Phys Med Rehabil. 2011; 90: 682-5.

Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. American Heart Sssociation guidelines for primary prevention of cardiovascular disease and stroke: Circulation. 2002;106: 388–91.

Cooney MM, Walker JB. Hydraulic resistance exercise benefits cardiovascular fitness of spinal cord injures. Med Sci Sports Exerc. 1986; 18: 522-5.

DiCarlo SE. Effect of arm ergometry training on wheelchair propulsion endurance of individuals with quadriplegia. Phys Therap. 1988; 68: 40-4.

Bougenot MP, Tordi N, Betik AC, Martin X, Le Foll D, Paratte B, et al. Effects of a wheelchair ergometer training programme on spinal cord-injured persons. Spinal Cord. 2003; 41: 451-6.

Ditor DS, Kamath MV, MacDonald MJ, Bugaresti J, McCartney N, Hicks AL. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. J Appl Physiol. 2005; 98:1519–25.

de Paleville DT, Swank AM. Special Considerations for exercise testing and programming for individuals with spinal cord injury. ACSM’S Health Fitness J. 2014; 18: 44-6.

Drory Y, Ohry A, Brooks ME, Dolphin D, Kellermann JJ. Arm crank ergometry in chronic spinal cord injured patients. Arch Phys Med Rehabil. 1990; 71:389-92.

Wheeler GD, Andrews B, Lederer R, Davoodi R, Natho K, Weiss C, et al. Functional electrical stimulation-assisted rowing: increasing cardiovascular fitness through functional electrical stimulation rowing training in persons with spinal cord injury. Arch Phys Med Rehabil. 2002; 83: 1093-9.

Jacobs PL, Nash MS, Rusinowski JW. Circuit training provides cardiorespiratory and strengh benefits in persons with paraplegia. Med Sci Sports Exerc.. 2001; 33: 711-7.

Al-Rahamneh HQ, Eston RG. Prediction of peak oxygen consumption from the ratings of perceived exertion during a graded exercise test and ramp exercise test in able-bodied participants and paraplegic persons. Arch Phys Med Rehabil. 2011;92:277-83.

Al-Rahamneh HQ, Eston RG. The validity of predicting peak oxygen uptake from a perceptually guided graded exercise test during arm exercise in paraplegic individuals. Spinal Cord. 2011;49:430-4.




DOI: http://dx.doi.org/10.25759/spmfr.214

Apontamentos

  • Não há apontamentos.


Revista da Sociedade Portuguesa de Medicina Física e de Reabilitação