Precision Medicine in Physical and Rehabilitation Medicine (PRM)
DOI:
https://doi.org/10.25759/spmfr.577Palavras-chave:
Precision Rehabilitation, Physical and Rehabilitation Medicine, Big Data, Artificial Intelligence, Biomarkers, Genetics, Neuroimaging, Biopsychosocial ApproachResumo
Precision Rehabilitation (PR) represents a transformative approach in Physical and Rehabilitation Medicine (PRM), emphasizing the integration of personalized care with the best clinical evidence to enhance patient outcomes. This article discusses the pivotal role of emerging technologies such as Big Data (BD) and Artificial Intelligence (AI) in revolutionizing rehabilitation practices. By leveraging vast datasets and advanced algorithms, healthcare professionals can develop tailored therapeutic plans, optimize interventions, and monitor patient progress in real-time. Additionally, the integration of genetic insights and biomarkers into rehabilitation programs allows for a more nuanced understanding of individual patient responses, facilitating personalized treatment strategies. Neuroimaging techniques further enhance the predictive capabilities regarding functional recovery, while psychosocial and environmental factors are acknowledged as critical components in formulating comprehensive rehabilitation plans. Despite the promising advancements, challenges such as ethical considerations, data privacy, and the need for standardized protocols remain. This article underscores the importance of a biopsychosocial approach in rehabilitation, advocating for a patient-centered model that adapts to the unique characteristics and needs of each individual. As PR continues to evolve, it holds the potential to redefine rehabilitation care, making personalized medicine a practical reality in clinical settings.Downloads
Referências
Inteligência Artificial na Reabilitação – Aula 1. YouTube. Disponível em: https://youtu.be/LeD1b_zhCy8
Inteligência Artificial na Reabilitação – Aula 2. YouTube. Disponível em: https://youtu.be/qYNweeDHyU
Lanotte F, O’Brien M, Jayaraman A. AI in Rehabilitation Medicine: Opportunities and Challenges. Ann Rehabil Med. 2023 Dec;47(6):444-58. doi:10.5555/amn.23131
Hwang U, Kim J, Kim K, Chung K. Machine learning models for predicting return to sports after anterior cruciate ligament reconstruction: Physical performance in early rehabilitation. Digit Health. 2024;10:205520762 41299065. doi:10.1177/20552076241299065
Swarnakar R, Yadav S. Artificial intelligence and machine learning in motor recovery: A rehabilitation medicine perspective. World J Clin Cases. 2023 Oct 16;11(29):7258-60. doi:10.12998/wjcc.v11.129.7258
Alzubaell L, Bai J, Al-Sabaawi A, et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10:46. doi:10.1186/s40537-023-00727-2
Cotton R, Seamon B, Segal R, Davis R, Sahu A, McLeod M, Celnik P, Ramey S, Abil-Hylab S. A Causal Framework for Precision Rehabilitation. arXiv. 2024. doi:10.48550/arXiv.2411.03919
Forough T, Mahsa A, Mandana H, Pirooz E. Precision Medicine in Clinical Practice. 2022. doi:10.1007/978-981-19-5082-7
Kumar D. The genomic and precision medicine in clinical practice – Current perspectives and future directions. The Physician. 2020;6(3). doi:10.38192/1.6.3.1
Pastorino R, Loreti C, Giovannini S, Ricciardi W, Padua L, Boccia S. Challenges of Prevention for a Sustainable Personalized Medicine. J Pers Med. 2021;11:311.
Majumdar S, Hraltej J, Robertson N. Advances in the genetics of stroke risk and recovery. J Neurol. 2023;270:590-1.
Park A, Solinsky R. Leveraging genetics to optimize rehabilitation outcomes after spinal cord injury: contemporary challenges and future opportunities. Front Genet. 2024;15:1350422.
Bagrowski B. Perspectives for the application of neurogenetic research in programming neurorehabilitation. Mol Aspects Med. 2023;91:101149.
Hamish S, Diedrichs V, Bartlett C. Early considerations of genetics in aphasia rehabilitation: a narrative review. Aphasiology. 2023;37(6):835-53.
Branco JP, Costa JS, Sargento-Freitas J, Oliveira S, Mendes B, Lains J, Pinheiro J. Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke. Acta Med Port. 2016 Nov;29(11):749-54.
Branco JP, Oliveira S, Sargento-Freitas J, Costa JS, Cordeiro G, Cunha L, Gonçalves AF, Pinheiro J. S100β protein as a predictor of post-stroke functional outcome: a prospective study. J Stroke Cerebrovasc Dis. 2018 Jul;27(7):1890-6.
Branco JP, Oliveira S, Sargento-Freitas J, Galego O, Cordeiro G, Cunha L, Gonçalves AF, Pinheiro J. Neuroimaging, serum biomarkers, and patient characteristics as predictors of upper limb functioning 12 weeks after acute stroke: an observational, prospective study. Top Stroke Rehabil. 2018;1-7.
Włodarczyk L, Cichon N, Saluk-Bijak J, Bijak M, Majos A, Miller E. Neuroimaging Techniques as Potential Tools for Assessment of Angiogenesis and Neuroplasticity after Stroke and Their Rehabilitation Implications. J Clin Med. 2022 Apr 28;11(9):2473. doi:10.3390/crm11092473
Ball EJ, Shah M, Ross E, Sutherland R, Squires C, Mead GE, Wardlaw JM, Quinn TJ, Religa D, Lundstrom E, Cheyne J, Shenbin SD. Predictors of post-stroke cognitive impairment using acute structural MRI: a systematic review and meta-analysis. Int J Stroke. 2023 Jun;18(5):543-54.
Bigler ED. Volumetric MRI Findings in Mild Traumatic Brain Injury and Neuropsychological Outcome. Neuropsychol Rev. 2023 Mar;33(1):5-41.
Mackey S, Greely HT, Martucci KT. Neuroimaging-based pain biomarkers: definitions, clinical and research applications, and frameworks for personalized pain medicine. Pain Rep. 2019;4(4):e762.
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke: functional reorganization of motor network. Neuroimage Clin. 2024;43:103636.
Jo H, Kim C, Gwon D, Lee J, Lee J, Park KM, Park S. Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke: an automated machine learning approach. Sci Rep. 2023;13:16926.
Cao W, Zhang X, Qiu H. Rehabilomics: A state-of-the-art review of framework, application, and future considerations. Front Neurol. 2023;14:1103349.
World Health Organization (WHO). Constitution of the World Health Organization. Disponível em: https://www.who.int/about/who-we-are/constitution/
Engel GL. The Need for a New Medical Model: A Challenge for Biomedicine. Science. 1977;196:129-36.
Perenboom RJ, Chorus AM. Measuring participation according to the International Classification of Functioning, Disability and Health (ICF). Disabil Rehabil. 2003 Jun;25(11–12):577-87.
World Health Organization. International Classification of Functioning, Disability and Health (ICF). Geneva: WHO; 2001.
World Health Organization. Rehabilitation – factsheet. Disponível em: https://www.who.int/news-room/fact-sheets/detail/rehabilitation/
Bach-y-Rita P. Late postacute neurologic rehabilitation: neuroscience, engineering, and clinical programs. Arch Phys Med Rehabil. 2003;84(8):1100-8.
Wade DT. Holistic Health Care: What is it, and how can we achieve it? 2009. Disponível em: http://www.noc.nhs.uk/oce/research-education/documents/HolisticHealthCare09-11-15.pdf
UEMS-PRM Section and Board. The Individual Rehabilitation Project is the core of person-centered rehabilitation. Eur J Phys Rehabil Med. 2022.
Wade DT. A general theory of rehabilitation: Rehabilitation catalyses and assists adaptation to illness. Clin Rehabil. 2024 Apr;38(4):429-42.
World Health Organization. WHO Global Strategy on Digital Health 2020-2025.
Topol E. The Creative Destruction of Medicine: How the Digital Revolution Will Create Better Health Care. Basic Books; 2012.
European Society of Physical and Rehabilitation Medicine. Guidelines on Digital Rehabilitation and Telerehabilitation. 2024. Disponível em: https://www.esprm.org/guidelines/digital-telerehabilitation/
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2025 Revista da Sociedade Portuguesa de Medicina Física e de Reabilitação

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Os manuscritos devem ser acompanhados de declaração de originalidade, Autoria e de cedência dos direitos de propriedade do artigo, assinada por todos os Autores.
Quando o artigo é aceite para publicação é obrigatória a submissão de um documento digitalizado, assinado por todos os Autores, com a partilha dos direitos de Autor entre Autores e a Revista SPMFR, conforme minuta:
Declaração Copyright
Ao Editor-chefe da Revista da Sociedade Portuguesa de Medicina Física e Reabilitação
O(s) Autor(es) certifica(m) que o manuscrito intitulado:
____________________________________________________________________ (ref.Revista da SPMFR_________) é original, que todas as afirmações apresentadas como factos são baseados na investigação do(s) Autor(es), que o manuscrito, quer em parte quer no todo, não infringe nenhum copyright e não viola nenhum direito da privacidade, que não foi publicado em parte ou no todo e que não foi submetido para publicação, no todo ou em parte, noutra revista, e que os Autores têm o direito ao copyright.
Todos os Autores declaram ainda que participaram no trabalho, se responsabilizam por ele e que não existe, da parte de qualquer dos Autores conflito de interesses nas afirmações proferidas no trabalho.
Os Autores, ao submeterem o trabalho para publicação, partilham com a Revista da SPMFR todos os direitos a interesses do copyright do artigo.
Todos os Autores devem assinar
Data:
Nome(maiúsculas)
Assinatura
Relativamente à utilização por terceiros a Revista da SPMFR rege-se pelos termos da licença Creative Commons “Atribuição – uso Não-Comercial – Proibição de Realização de Obras derivadas (by-nc-nd)”.
Após publicação na Revista SPMFR, os Autores ficam autorizados a disponibilizar os seus artigos em repositórios das suas instituições de origem, desde que mencionem sempre onde foram publicados.
OS AUTORES DEVERÃO SUBMETER UMA DECLARAÇÃO DE CONTRIBUIÇÃO / CONTRIBUTORSHIP STATEMENT INDICANDO O TIPO DE PARTICIPAÇÃO DE CADA AUTOR NO ARTIGO. Mais informações: https://authors.bmj.com/policies/bmj-policy-on-authorship/
